Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The pathogenic fungusBatrachochytrium dendrobatidis(Bd)is associated with drastic global amphibian declines. Prophylactic exposure to killed zoospores and the soluble chemicals they produce (Bdmetabolites) can induce acquired resistance toBdin adult Cuban treefrogsOsteopilus septentrionalis. Here, we exposed metamorphic frogs of a second species, the Pacific chorus frogPseudacris regilla, to one of 2 prophylactic treatments prior to liveBdexposures: killedBdzoospores with metabolites, killed zoospores alone, or a water control. Prior exposure to killedBdzoospores with metabolites reducedBdinfection intensity in metamorphic Pacific chorus frogs by 60.4% compared to control frogs. Interestingly,Bdintensity in metamorphs previously exposed to killed zoospores alone did not differ in magnitude relative to the control metamorphs, nor to those treated with killed zoospores plus metabolites. Previous work indicated thatBdmetabolites alone can induce acquired resistance in tadpoles, and so these findings together indicate that it is possible that the solubleBdmetabolites may contain immunomodulatory components that drive this resistance phenotype. Our results expand the generality of this prophylaxis work by identifying a second amphibian species (Pacific chorus frog) and an additional amphibian life stage (metamorphic frog) that can acquire resistance toBdafter metabolite exposure. This work increases hopes that aBd-metabolite prophylaxis might be widely effective across amphibian species and life stages.more » « less
-
null (Ed.)Ecosystems across the United States are changing in complex and surprising ways. Ongoing demand for critical ecosystem services requires an understanding of the populations and communities in these ecosystems in the future. This paper represents a synthesis effort of the U.S. National Science Foundation-funded Long-Term Ecological Research (LTER) network addressing the core research area of “populations and communities.” The objective of this effort was to show the importance of long-term data collection and experiments for addressing the hardest questions in scientific ecology that have significant implications for environmental policy and management. Each LTER site developed at least one compelling case study about what their site could look like in 50–100 yr as human and environmental drivers influencing specific ecosystems change. As the case studies were prepared, five themes emerged, and the studies were grouped into papers in this LTER Futures Special Feature addressing state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the “connectivity” theme and has examples from the Phoenix (urban), Niwot Ridge (alpine tundra), McMurdo Dry Valleys (polar desert), Plum Island (coastal), Santa Barbara Coastal (coastal), and Jornada (arid grassland and shrubland) sites. Connectivity has multiple dimensions, ranging from multi-scalar interactions in space to complex interactions over time that govern the transport of materials and the distribution and movement of organisms. The case studies presented here range widely, showing how land-use legacies interact with climate to alter the structure and function of arid ecosystems and flows of resources and organisms in Antarctic polar desert, alpine, urban, and coastal marine ecosystems. Long-term ecological research demonstrates that connectivity can, in some circumstances, sustain valuable ecosystem functions, such as the persistence of foundation species and their associated biodiversity or, it can be an agent of state change, as when it increases wind and water erosion. Increased connectivity due to warming can also lead to species range expansions or contractions and the introduction of undesirable species. Continued long-term studies are essential for addressing the complexities of connectivity. The diversity of ecosystems within the LTER network is a strong platform for these studies.more » « less
An official website of the United States government
